Implementation of a strain energy-based nonlinear finite element in the object-oriented environment
نویسندگان
چکیده
a r t i c l e i n f o a b s t r a c t Keywords: Hyperelastic material Strain energy density function Energy-based finite element Local relaxation procedure Object-oriented finite element programming The objective of the paper is to describe a novel finite element computational method based on a strain energy density function and to implement it in the object-oriented environment. The original energy-based finite element was put into the known standard framework of classes and handled in a different manner. The nonlinear properties of material are defined with a modified strain energy density function. The local relaxation procedure proposed as a method used to resolve a nonlinear problem is implemented in C++ language. The hexahedral element with eight nodes as well as the adaptation of the nonlinear finite element is introduced. The chosen numerical model is made of nearly incompressible hyperelastic material. The application of the proposed element is shown on the example of a rectangular parallelepiped with a hollow port.
منابع مشابه
Size-dependent Bending of Geometrically Nonlinear of Micro-Laminated Composite Beam based on Modified Couple Stress Theory
In this study, the effect of finite strain on bending of the geometrically nonlinear of micro laminated composite Euler-Bernoulli beam based on Modified Couple Stress Theory (MCST) is studied in thermal environment. The Green-Lagrange strain tensor according to finite strain assumption and the principle of minimum potential energy is applied to obtain governing equation of motion and boundary c...
متن کاملA finite element model for extension and shear modes of piezo-laminated beams based on von Karman's nonlinear displacement-strain relation
Piezoelectric actuators and sensors have been broadly used for design of smart structures over the last two decades. Different theoretical assumptions have been considered in order to model these structures by the researchers. In this paper, an enhanced piezolaminated sandwich beam finite element model is presented. The facing layers follow the Euler-Bernoulli assumption while the core layers a...
متن کاملAnalysis of deep drawing process to predict the forming severity considering inverse finite element and extended strain-based forming limit diagram
An enhanced unfolding Inverse Finite Element Method (IFEM) has been used together with an extended strain-based forming limit diagram (EFLD) to develop a fast and reliable approach to predict the feasibility of the deep drawing process of a part and determining where the failure or defects can occur. In the developed unfolding IFEM, the meshed part is properly fold out on the flat sheet and tre...
متن کاملبررسی توزیع انرژی ذخیره شده تغییر شکل در داخل پلیکریستال فلزی با استفاده از تئوری کریستال پلاستیسیته بر مبنای چگالی نابجایی
The stored deformation energy in the dislocation structures in a polycrystalline metal can provide a sufficient driving force to move grain boundaries during annealing. In this paper, a thermodynamically-consistent three-dimensional, finite-strain and dislocation density-based crystal viscoplasticity constitutive theory has been developed to describe the distribution of stored energy and dislo...
متن کاملModelsaz: An Object-Oriented Computer-Aided Modeling Environment
Modeling and simulation of processing plants are widely used in industry. Construction of a mathematical model for a plant is a time-consuming and error-prone task. In light of extensive advancements in computer science (both hardware and software), computers are becoming a necessary instrument in industrial activities. Many software tools for modeling, simulation and optimization of proces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Physics Communications
دوره 181 شماره
صفحات -
تاریخ انتشار 2010